3.2.59 \(\int \frac {d+e x^2}{\sqrt {a-c x^4}} \, dx\) [159]

Optimal. Leaf size=124 \[ \frac {a^{3/4} e \sqrt {1-\frac {c x^4}{a}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt {a-c x^4}}+\frac {a^{3/4} \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right ) \sqrt {1-\frac {c x^4}{a}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt {a-c x^4}} \]

[Out]

a^(3/4)*e*EllipticE(c^(1/4)*x/a^(1/4),I)*(1-c*x^4/a)^(1/2)/c^(3/4)/(-c*x^4+a)^(1/2)+a^(3/4)*EllipticF(c^(1/4)*
x/a^(1/4),I)*(-e+d*c^(1/2)/a^(1/2))*(1-c*x^4/a)^(1/2)/c^(3/4)/(-c*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1215, 230, 227, 1214, 1213, 435} \begin {gather*} \frac {a^{3/4} \sqrt {1-\frac {c x^4}{a}} \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right ) F\left (\left .\text {ArcSin}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt {a-c x^4}}+\frac {a^{3/4} e \sqrt {1-\frac {c x^4}{a}} E\left (\left .\text {ArcSin}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt {a-c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[a - c*x^4],x]

[Out]

(a^(3/4)*e*Sqrt[1 - (c*x^4)/a]*EllipticE[ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(3/4)*Sqrt[a - c*x^4]) + (a^(3/4
)*((Sqrt[c]*d)/Sqrt[a] - e)*Sqrt[1 - (c*x^4)/a]*EllipticF[ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(3/4)*Sqrt[a -
c*x^4])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 230

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + b*(x^4/
a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 1214

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4], In
t[(d + e*x^2)/Sqrt[1 + c*(x^4/a)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] &&
!GtQ[a, 0]

Rule 1215

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-c/a, 2]}, Dist[(d*q - e)/q, In
t[1/Sqrt[a + c*x^4], x], x] + Dist[e/q, Int[(1 + q*x^2)/Sqrt[a + c*x^4], x], x]] /; FreeQ[{a, c, d, e}, x] &&
NegQ[c/a] && NeQ[c*d^2 + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {d+e x^2}{\sqrt {a-c x^4}} \, dx &=\frac {\left (\sqrt {a} e\right ) \int \frac {1+\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a-c x^4}} \, dx}{\sqrt {c}}+\left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {a-c x^4}} \, dx\\ &=\frac {\left (\sqrt {a} e \sqrt {1-\frac {c x^4}{a}}\right ) \int \frac {1+\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {1-\frac {c x^4}{a}}} \, dx}{\sqrt {c} \sqrt {a-c x^4}}+\frac {\left (\left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \sqrt {1-\frac {c x^4}{a}}\right ) \int \frac {1}{\sqrt {1-\frac {c x^4}{a}}} \, dx}{\sqrt {a-c x^4}}\\ &=\frac {\sqrt [4]{a} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \sqrt {1-\frac {c x^4}{a}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{\sqrt [4]{c} \sqrt {a-c x^4}}+\frac {\left (\sqrt {a} e \sqrt {1-\frac {c x^4}{a}}\right ) \int \frac {\sqrt {1+\frac {\sqrt {c} x^2}{\sqrt {a}}}}{\sqrt {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}} \, dx}{\sqrt {c} \sqrt {a-c x^4}}\\ &=\frac {a^{3/4} e \sqrt {1-\frac {c x^4}{a}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt {a-c x^4}}+\frac {\sqrt [4]{a} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \sqrt {1-\frac {c x^4}{a}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{\sqrt [4]{c} \sqrt {a-c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.04, size = 77, normalized size = 0.62 \begin {gather*} \frac {\sqrt {1-\frac {c x^4}{a}} \left (3 d x \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\frac {c x^4}{a}\right )+e x^3 \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};\frac {c x^4}{a}\right )\right )}{3 \sqrt {a-c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/Sqrt[a - c*x^4],x]

[Out]

(Sqrt[1 - (c*x^4)/a]*(3*d*x*Hypergeometric2F1[1/4, 1/2, 5/4, (c*x^4)/a] + e*x^3*Hypergeometric2F1[1/2, 3/4, 7/
4, (c*x^4)/a]))/(3*Sqrt[a - c*x^4])

________________________________________________________________________________________

Maple [A]
time = 0.11, size = 154, normalized size = 1.24

method result size
default \(-\frac {e \sqrt {a}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}\, \sqrt {c}}+\frac {d \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\) \(154\)
elliptic \(-\frac {e \sqrt {a}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}\, \sqrt {c}}+\frac {d \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\) \(154\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(-c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-e*a^(1/2)/(1/a^(1/2)*c^(1/2))^(1/2)*(1-1/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+1/a^(1/2)*c^(1/2)*x^2)^(1/2)/(-c*x^4+a
)^(1/2)/c^(1/2)*(EllipticF(x*(1/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(1/a^(1/2)*c^(1/2))^(1/2),I))+d/(1/a^(1/
2)*c^(1/2))^(1/2)*(1-1/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+1/a^(1/2)*c^(1/2)*x^2)^(1/2)/(-c*x^4+a)^(1/2)*EllipticF(x
*(1/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((x^2*e + d)/sqrt(-c*x^4 + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [A]
time = 0.99, size = 82, normalized size = 0.66 \begin {gather*} \frac {d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{2 i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{2 i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(-c*x**4+a)**(1/2),x)

[Out]

d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(2*I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + e*x**3*gamma(3/4
)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(2*I*pi)/a)/(4*sqrt(a)*gamma(7/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((x^2*e + d)/sqrt(-c*x^4 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {e\,x^2+d}{\sqrt {a-c\,x^4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)/(a - c*x^4)^(1/2),x)

[Out]

int((d + e*x^2)/(a - c*x^4)^(1/2), x)

________________________________________________________________________________________